Características mecánicas, cálculo y durabilidad del hormigón armado

28.07.2014 14:41

UNIDAD N°3: HORMIGÓN

 

 

Características mecánicas

La principal característica estructural del hormigón es resistir muy bien los esfuerzos de compresión. Sin embargo, tanto su resistencia a tracción como al esfuerzo cortante son muy bajas.

Para superar este inconveniente, se "arma" el hormigón introduciendo barras de acero, conocido como hormigón armado, o concreto reforzado, permitiendo soportar los esfuerzos cortantes y de tracción con las barras de acero. Es usual, además, disponer barras de acero reforzando zonas o elementos fundamentalmente comprimidos, como es el caso de los pilares o columnas.

 Los aditivos permiten obtener hormigones de alta resistencia; la inclusión de monómeros y adiciones para hormigón aportan múltiples mejoras en las propiedades del hormigón.

Cuando se proyecta un elemento de hormigón armado se establecen las dimensiones, el tipo de hormigón, la cantidad, calidad, aditivos, adiciones y disposición del acero que hay que aportar en función de los esfuerzos que deberá resistir cada elemento.

 Un diseño racional, la adecuada dosificación, mezcla, colocación, consolidación, acabado y curado, hacen del hormigón un material idóneo para ser utilizado en construcción, por ser resistente, durable, incombustible, casi impermeable, y requerir escaso mantenimiento. Como puede ser moldeado fácilmente en amplia variedad de formas y adquirir variadas texturas y colores, se utiliza en multitud de aplicaciones.

Características físicas del hormigón

Las principales características físicas del hormigón, en valores aproximados, son:

·        Densidad: en torno a 2350 kg/m³

·        Resistencia a compresión: de 150 a 500 kg/cm² (15 a 50 MPa) para el hormigón ordinario. Existen hormigones especiales de alta resistencia que alcanzan hasta 2000 kg/cm² (200 MPa).

·        Resistencia a tracción (sin armar – no es hormigón armado): proporcionalmente baja, es del orden de un décimo de la resistencia a compresión y, generalmente, poco significativa en el cálculo global. El acero resiste desde 2800 a 4200 k/cm2 y más en aceros especiales.

·        Tiempo de fraguado: dos horas, aproximadamente, variando en función de la temperatura y la humedad del ambiente exterior.

·        Tiempo de endurecimiento: progresivo, dependiendo de la temperatura, humedad y otros parámetros.

·        De 24 a 48 horas, adquiere la mitad de la resistencia máxima; en una semana 3/4 partes, y en 4 semanas prácticamente la resistencia total de cálculo.

·        Dado que el hormigón se dilata y contrae en magnitudes semejantes al acero, pues tienen parecido coeficiente de dilatación térmico, resulta muy útil su uso simultáneo en obras de construcción; además, el hormigón protege al acero de la oxidación al recubrirlo.

·        Hormigón y acero en conjunto conforman el hormigón armado que trabaja en forma excelente para resistir esfuerzos de compresión, flexión y corte. Si se desea trabajar con elementos que trabajen a esfuerzos de tracción se trabaja con acero. Un ejemplo concreto son los tableros de puentes que cuelgan desde cables de acero. Conocidos vulgarmente como puentes colgantes.

 

Durabilidad

Se define la durabilidad del hormigón como la capacidad para comportarse satisfactoriamente frente a las acciones físicas y químicas agresivas a lo largo de la vida útil de la estructura protegiendo también las armaduras y elementos metálicos embebidos en su interior.

Por tanto no solo hay que considerar los efectos provocados por las cargas y solicitaciones, sino también las condiciones físicas y químicas a las que se expone. Por ello se considera el tipo de ambiente en que se va a encontrar la estructura y que puede afectar a la corrosión de las armaduras, ambientes químicos agresivos,

Para garantizar la durabilidad del hormigón y la protección de las armaduras frente a la corrosión es importante realizar un hormigón con una permeabilidad reducida, realizando una mezcla con una relación agua/cemento baja, una compactación idónea, un peso en cemento adecuado y la hidratación suficiente de éste añadiendo agua de curado para completarlo. De esta forma se consigue que haya los menos poros posibles y una red capilar interna poco comunicada y así se reducen los ataques al hormigón.

En los casos de existencia de sulfatos en el terreno o de agua de mar se deben emplear cementos especiales. Para prevenir la corrosión de armaduras hay que cuidar el recubrimiento mínimo de las mismas.

 

Seguridad estructural

En los años 1960, se inició el desarrolló la teoría de la seguridad estructural respecto de los Estados límites, estableciéndose valores máximos en las flechas y en la fisuración de los elementos estructurales, acotando los riesgos.

 

Coeficientes de seguridad

 

Los reglamentos de los años 1970, para poder simplificar los complejos cálculos de probabilidades, establecieron los Coeficientes de seguridad, en función de la calidad de los materiales, el control de la ejecución de la obra y la dificultad del proyecto. Se introdujeron los Coeficientes de mayoración de cargas o acciones, y los Coeficientes de minoración de resistencia de los componentes materiales.

 

 

 

Reglamentos

A mediados del siglo XX los reglamentos tenían decenas de páginas, en el siglo XXI poseen cientos. La introducción de programas informáticos posibilita cálculos muy complejos, rápidos y soluciones más precisas. Los reglamentos hacen especial hincapié en estados últimos de servicio (fisuración, deformaciones) comportamiento (detalles constructivos) y durabilidad (recubrimientos, calidades), limitando la resolución experimental con múltiples condicionantes.

Cálculo y proyecto

Antes de construir cualquier elemento de hormigón deben calcularse las cargas a que estará sometido y, en función de las mismas, se determinarán las dimensiones de los elementos y calidad de hormigón, la disposición y cantidad de las armaduras en los mismos.

El cálculo de una estructura de hormigón consta de varias etapas. Primero se realizan una serie de simplificaciones en la estructura real transformándola en una estructura ideal de cálculo. Después se determinan las cargas que va a soportar la estructura, considerando en cada punto la combinación de cargas que produzca el efecto más desfavorable. Por último se dimensiona cada una de las secciones para que pueda soportar las solicitaciones más desfavorables.

Una vez calculada la estructura se redacta el proyecto, que es el conjunto de documentos que sirve para la realización de la obra y que detalla los elementos a construir. En el proyecto están incluidos los cálculos realizados. También incluye los planos donde figuran las dimensiones de los elementos a ejecutar, la tipificación de los hormigones previstos y las características resistentes de los aceros a emplear.

 

Producción mundial de hormigón

La producción mundial del cemento fue de más de 2.500 millones de toneladas en 2007. Estimando una dosificación de cemento entre 250 y 300 kg de cemento por metro cúbico de hormigón, significa que se podrían producir de 8.000 a 10.000 millones de metros cúbicos, que equivalen a 1,5 metros cúbicos de hormigón por persona. Ningún material de construcción ha sido usado en tales cantidades y en un futuro no parece existir otro material de construcción que pueda competir con el hormigón en magnitud de volumen.

         
         
         
         
         
         
         
         
         
         
         
         
 
                       

 

Contacto

Blog de Osky osky2015@gmail.com